Pengenalan Tanaman Obat Liar dengan Metode Convolutional Neural Network

Authors

  • Diah Puspito Wulandari Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
  • Muhammad Emirreza Pahlevi Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
  • Hany Boedinugroho Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

DOI:

https://doi.org/10.59378/jcenim.v2i1.43

Keywords:

Tanaman Obat, CNN, Image Processing, Klasifikasi

Abstract

Tanaman adalah dasar dari semua sumber kehidupan di bumi yang memberikan kita semua makan dan juga oksigen. Pemahaman yang baik tentang tanaman obat sangat penting untuk membantu dalam mengidentifikasi spesies atau jenis tanaman obat liar yang masih belum diketahui oleh banyak masyarakat sekitar, jenis tanaman ini juga untuk membantu meningkatkan industri obat menyeimbangkan ekosistem serta produktivitas dan keberlanjutan pertanian. Hasil dari percobaan menggunakan fitur CNN ini menunjukkan konsistensi dan keunggulan dibandingkan lainnya. Klasifikasi citra tanaman obat liar masih dianggap sebagai tantangan dan masalah yang belum terpecahkan, hal ini dikarenakan tumbuhan di alam memiliki macam bentuk dan representasi warna jadi berdasarkan citra model bentuk tanaman berdasarkan kelengkungan dengan memanfaatkan ukuran integral agar bisa mengetahui fungsi kelengkungan tersebut kemudian dilakukan proses klasifikasi data citra tanaman obat liar tersebut sehingga bisa teridentifikasi lalu dikembangkan.

References

I. A. M. Zin et al., “Herbal plant recognition using deep convolutional neural network,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 2198–2205, 2020.

I. V. P. D. Reyes, A. M. Sison, and R. P. Medina, “Fused random pooling in convolutional neural network for herbal plants image classification,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 3208–3214, 2019.

S. Patidar, U. Singh, and S. K. Sharma, “Weed seedling detection using mask regional convolutional neural network,” in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2020.

K. H. Mahmud, Adiwijaya, and S. A. Faraby, “Klasifikasi citra multi-kelas menggunakan convolutional neural network,” e-Proceeding of Engineering, 2019, Telkom University, Bandung.

S. H. Lee et al., “Deep-plant: Plant identification with convolutional neural network,” in 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015.

J. Hu, Z. Chen, M. Yang, R. Zhang, and Y. Cui, “A multiscale fusion convolutional neural network for plant leaf recognition,” IEEE Signal Processing Letters, vol. 25, no. 6, pp. 853–857, 2018.

P. Sharma, Y. P. S. Berwal, and W. Ghai, “Performance analysis of deep learning cnn models for disease detection in plants using image segmentation,” Information Processing in Agriculture, 2019.

K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Y. Wu et al., “Convolution neural network based transfer learning for classification of flowers,” in 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP). IEEE, 2018.

I. Z. Mukti and D. Biswas, “Transfer learning based plant diseases detection using resnet50,” in 2019 4th International Conference on Electrical Information and Communication Technology (EICT). IEEE, 2019.

S. U. Habiba, M. K. Islam, and S. M. M. Ahsan, “Bangladeshi plant recognition using deep learning based leaf classification,” in 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). IEEE, 2019.

K. A. M. Han and U. Watchareeruetai, “Black gram plant nutrient deficiency classification in combined images using convolutional neural network,” in 2020 8th International Electrical Engineering Congress (iEECON). IEEE, 2020.

J. A. Villaruz et al., “Philippine indigenous plant seedlings classification using deep learning,” in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2018.

T. Agarwal and H. Mittal, “Performance comparison of deep neural networks on image datasets,” in 2019 Twelfth International Conference on Contemporary Computing (IC3). IEEE, 2019.

I. W. S. E. P., A. Y. Wijaya, and R. Soelaiman, “Klasifikasi citra menggunakan convolutional neural network (cnn) pada caltech 10,” Teknik Informatika, Fakultas Teknologi Informasi, ITS, 2015.

Downloads

Published

2025-03-15

How to Cite

Diah Puspito Wulandari, Muhammad Emirreza Pahlevi, & Hany Boedinugroho. (2025). Pengenalan Tanaman Obat Liar dengan Metode Convolutional Neural Network. Journal of Computer Engineering, Network, and Intelligent Multimedia, 2(1), 16–25. https://doi.org/10.59378/jcenim.v2i1.43

Issue

Section

Articles