Pengenalan Tanaman Obat Liar dengan Metode Convolutional Neural Network
DOI:
https://doi.org/10.59378/jcenim.v2i1.43Keywords:
Tanaman Obat, CNN, Image Processing, KlasifikasiAbstract
Tanaman adalah dasar dari semua sumber kehidupan di bumi yang memberikan kita semua makan dan juga oksigen. Pemahaman yang baik tentang tanaman obat sangat penting untuk membantu dalam mengidentifikasi spesies atau jenis tanaman obat liar yang masih belum diketahui oleh banyak masyarakat sekitar, jenis tanaman ini juga untuk membantu meningkatkan industri obat menyeimbangkan ekosistem serta produktivitas dan keberlanjutan pertanian. Hasil dari percobaan menggunakan fitur CNN ini menunjukkan konsistensi dan keunggulan dibandingkan lainnya. Klasifikasi citra tanaman obat liar masih dianggap sebagai tantangan dan masalah yang belum terpecahkan, hal ini dikarenakan tumbuhan di alam memiliki macam bentuk dan representasi warna jadi berdasarkan citra model bentuk tanaman berdasarkan kelengkungan dengan memanfaatkan ukuran integral agar bisa mengetahui fungsi kelengkungan tersebut kemudian dilakukan proses klasifikasi data citra tanaman obat liar tersebut sehingga bisa teridentifikasi lalu dikembangkan.
References
I. A. M. Zin et al., “Herbal plant recognition using deep convolutional neural network,” Bulletin of Electrical Engineering and Informatics, vol. 9, no. 5, pp. 2198–2205, 2020.
I. V. P. D. Reyes, A. M. Sison, and R. P. Medina, “Fused random pooling in convolutional neural network for herbal plants image classification,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 3208–3214, 2019.
S. Patidar, U. Singh, and S. K. Sharma, “Weed seedling detection using mask regional convolutional neural network,” in 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). IEEE, 2020.
K. H. Mahmud, Adiwijaya, and S. A. Faraby, “Klasifikasi citra multi-kelas menggunakan convolutional neural network,” e-Proceeding of Engineering, 2019, Telkom University, Bandung.
S. H. Lee et al., “Deep-plant: Plant identification with convolutional neural network,” in 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015.
J. Hu, Z. Chen, M. Yang, R. Zhang, and Y. Cui, “A multiscale fusion convolutional neural network for plant leaf recognition,” IEEE Signal Processing Letters, vol. 25, no. 6, pp. 853–857, 2018.
P. Sharma, Y. P. S. Berwal, and W. Ghai, “Performance analysis of deep learning cnn models for disease detection in plants using image segmentation,” Information Processing in Agriculture, 2019.
K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.
Y. Wu et al., “Convolution neural network based transfer learning for classification of flowers,” in 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP). IEEE, 2018.
I. Z. Mukti and D. Biswas, “Transfer learning based plant diseases detection using resnet50,” in 2019 4th International Conference on Electrical Information and Communication Technology (EICT). IEEE, 2019.
S. U. Habiba, M. K. Islam, and S. M. M. Ahsan, “Bangladeshi plant recognition using deep learning based leaf classification,” in 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). IEEE, 2019.
K. A. M. Han and U. Watchareeruetai, “Black gram plant nutrient deficiency classification in combined images using convolutional neural network,” in 2020 8th International Electrical Engineering Congress (iEECON). IEEE, 2020.
J. A. Villaruz et al., “Philippine indigenous plant seedlings classification using deep learning,” in 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE, 2018.
T. Agarwal and H. Mittal, “Performance comparison of deep neural networks on image datasets,” in 2019 Twelfth International Conference on Contemporary Computing (IC3). IEEE, 2019.
I. W. S. E. P., A. Y. Wijaya, and R. Soelaiman, “Klasifikasi citra menggunakan convolutional neural network (cnn) pada caltech 10,” Teknik Informatika, Fakultas Teknologi Informasi, ITS, 2015.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Diah Puspito Wulandari, Muhammad Emirreza Pahlevi, Hany Boedinugroho

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with JCENIM agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




