Komputasi Paralel untuk Mendeteksi Gelombang QRS Complex Menggunakan YOLO Deep Learning
DOI:
https://doi.org/10.59378/jcenim.v2i3.62Keywords:
Aritmia, EKG, Komputasi ParalelAbstract
Penyakit jantung merupakan salah satu penyebab kematian terbesar di dunia. Berdasarkan Riset Kesehatan Dasar (Riskesdas) Kementerian Kesehatan, pada tahun 2018 prevalensi penyakit jantung di Indonesia mencapai 1,5 dari jumlah seluruh penduduk. Salah satu penyebab munculnya penyakit jantung dapat diketahui melalui kondisi ritme jantung. Aritmia merupakan suatu kelainan ritme jantung yang tidak beraturan, terlalu cepat atau terlalu lambat. Kelainan aritmia dapat dideteksi menggunakan Elektrokardiogram (EKG). Deteksi aritmia dengan menggunakan teknologi pada bidang machine learning sangat diperlukan, sehingga dapat mendeteksi dan dilakukan terapi/pengobatan aritmia sedini mungkin untuk mengurangi resiko. Saat ini telah berkembang cara pembacaan dalam rangka panjang dikenal Long Term EKG. Pembacaan ini menghasilkan banyak data, yang tentunya membutuhkan waktu yang lama dalam pengolahannya. Berdasarkan hal tersebut, maka dimanfaatkanlah teknologi komputasi paralel yaitu pemrosesan komputasi secara bersamaan dengan memaksimalkan sumber daya perangkat yang dimiliki sehingga dapat mempersingkat waktu yang dibutuhkan.
References
I. Wibawa, I. Girintari, and M. Sudarma, “Komputasi paralel menggunakan model message passing pada sim sri sistem informasi manajemen rumah sakit,” Majalah Ilmiah Teknologi Elektro, vol. 17, p. 439, December 2018.
M. Susmikantri and W. Dewanta, “Komputasi paralel eigenvalue dalam penyelesaian difusi multi-group menggunakan metode household deflasi dan divide conquer,” in Lokakarya Komputasi dalam Sains dan Teknologi Nuklir, 2012, pp. 341–352.
S. Qi and W. Yishan, “Detection and analysis of ecg based on parallel computing technology,” in 2009 International Forum on Computer Science-Technology and Applications, vol. 1, 2009, pp. 106–109.
N. P. V. Hegde and A. Thakur, “Parallel processing architecture for ecg signal analysis,” International Journal of Machine Learning and Computing, pp. 291–293, January 2013.
H. H. Huang, C. H. Jeong, D. H. Hwang, and Y. C. Jo, “Automatic detection of arrhythmias using low-based network with long-duration ecg signals,” Engineering Proceedings, vol. 2, no. 1, 2020, available: https://www.mdpi.com/2673-4591/2/1/84.
N. M. Alfaris, “YOLOv3 look once (yolo) algorithm deep learning object detection terbaik,” Online, last accessed on 2021-02-19. Available: https://hajimuhammadafarisi.medium.com/yolo-only-look-once-yolo-algoritma-deep-learning-object-detection-terbaik-49ed81d6e9.
A. AB, “Darknet,” 2020, Online, last accessed on 2020-02-06. Available: https://github.com/AlexeyAB/darknet.
P. Troger, “Openmpi - parallel programming concepts - week 6,” p. 69, June 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Muhammad Achsan Hujjatul Islam, Muhtadin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with JCENIM agree to the following terms:
- Authors retain copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




