Klasifikasi Obstructive Sleep Apnea (OSA) Berdasarkan Fitur Statistik Interval RR pada Sinyal ECG

Authors

  • Desanti Nurma Risalah Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
  • Yoyon K. Suprapto Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia
  • Diah Puspito Wulandari Dept. Teknik Komputer Institut Teknologi Sepuluh Nopember Surabaya, Indonesia

DOI:

https://doi.org/10.59378/jcenim.v2i2.50

Keywords:

ECG, OSA, RR interval, Support Vector Machine

Abstract

Obstructive sleep apnea (OSA) adalah gangguan umum di mana seseorang berhenti bernapas saat tidur yang dapat menyebabkan penyakit kardiovaskular jika tidak ditangani dengan baik. Sebagian besar kasus sleep apnea diuji menggunakan polisomnografi (PSG), yang merupakan prosedur standar untuk diagnosis semua gangguan tidur. Namun, sebagian besar kasus sleep apnea masih tidak terdiagnosis karena prosedur pengujian yang mahal dan tidak praktis, mengingat polisomnografi (PSG) dilakukan di laboratorium tidur dan memerlukan pengamat manusia ahli yang harus bekerja semalaman. Penelitian ini mengusulkan suatu metode untuk mendeteksi OSA berdasarkan sinyal ECG menggunakan klasifikasi. Sinyal ECG dapat dimanfaatkan untuk membuat sistem deteksi menjadi lebih sederhana dan lebih cepat dibandingkan PSG. Sinyal ECG diperoleh dari dataset PhysioNet menggunakan 10 subjek perekaman yang berbeda. Data direkam selama 2 malam berturut-turut menggunakan perekaman ECG satu kanal. Fitur statistik diekstraksi berdasarkan interval RR yang memproses epoch berdurasi pendek dari data ECG. Hasil ekstraksi fitur digunakan sebagai masukan klasifikasi dengan metode Support Vector Machine untuk dilatih dan diuji pada rekaman tidur dari subjek dengan dan tanpa OSA. Kinerja sistem ditentukan dengan memperoleh nilai Akurasi, Sensitivitas, dan Spesifisitas. Hasil penelitian menunjukkan bahwa sistem mampu mengenali epoch gangguan tidur dengan tingkat akurasi yang tinggi, yaitu sekitar 83,67%. Di masa depan, sistem yang dibuat diharapkan dapat dikembangkan dan digunakan sebagai dasar pengembangan alat skrining OSA.

References

"Sleep disorder overview," www.neurologychannel.com, accessed: 2024.

"Sleep apnea: What is sleep apnea?" www.nhlbi.nih.gov, national Heart, Lung, and Blood Institute.

"Apnea guide," www.apneaguide.com.

American Thoracic Society, "Obstructive sleep apnea and heart disease," Am J Respir Crit Care Med, vol. 188, PP. PI-P2, 2013.

P. Chazal, T. Penzel, and C. Heneghan, "Automated detection of obstructive sleep apnoea at different time scales using the electrocardiogram," Physiological Measurement, vol. 25, no. 4, pp. 967–983, Aug 2004.

L. Almazaydeh, K. Elleithy, and M. Faezipour, "Detection of obstructive sleep apnea through ecg signal features," in IEEE International Conference on Electro/Information Technology, 2012.

A. Ng, J. Chung, M. Goh, W. Yu, K. Fan, and T. Wong, "Evaluation of the performance of using mean absolute amplitude analysis of thoracic and abdominal signals for immediate indication of sleep apnea events," Journal of Clinical Nursing, vol. 17, no. 17, pp. 2360–2366, Sep 2008.

D. Goldshtein, A. Tarasiuk, and Y. Zigel, "Automatic detection of obstructive sleep apnea using speech signals," IEEE Transactions on Biomedical Engineering, vol. 58, no. 5, pp. 1373–1382, May 2011.

D. Alvarez, R. Hornero, D. Abasolo, F. Campo, and C. Zamarron, "Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnea detection," Physiological Measurement, vol. 27, no. 4, pp. 399–412, Apr 2006.

D. Alvarez, R. Hornero, J. Marcos, F. Campo, and M. Lopez, "Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis," in Proceedings of the 31st IEEE International Conference on Engineering in Medicine and Biology Society (EMBS 2009), Sep 2009, pp. 400–403.

B. Xie and H. Minn, "Real time sleep apnea detection by classifier combination," IEEE Transactions on Information Technology in Biomedicine, 2012, in Press.

R. Lin, R. Lee, C. Tseng, H. Zhou, C. Chao, and J. Jiang, "A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks," Biomedical Engineering Applications, Basis & Communications, vol. 18, no. 3, pp. 138–143, 2006.

O. Manrique, A. Hernandez, T. Gonzalez, F. Pallester, and C. Dominquez, "Detection of obstructive sleep apnea in ecg recordings using time-frequency distributions and dynamic features," in Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBS 2009), Sep 2009, pp. 5559–5562.

L. Schader, C. Zywitz, V. Einn, B. Widiger, and G. Joseph, "Detection of sleep apnea using single channel ecgs from the physionet database," Computers in Cardiology 2000, vol. 27, pp. 263–266, Sep 2000.

M. Mendez, D. Ruini, O. V. Vallarini, M. Matteucci, T. Penzel, and A. Bianchi, "Detection of sleep apnea from surface ecg based on features extracted by an autoregressive model," in Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society (EMBS 2007), Aug 2007, pp. 6105–6108.

S. Isa, M. Fanny, W. Jatmiko, and A. Arumthy, "Sleep apnea detection from ecg signal, analysis on optimal features, principal components, and nonlinearity," in Proceedings of the 5th IEEE International Conference on Bioinformatics and Biomedical Engineering (ICBBE), May 2011, pp. 1–4.

A. S. Nugroho, A. B. Witarto, and D. Handoko, "Application of support vector machine in bioinformatics," in Proceedings of Indonesian Scientific Meeting in Central of Japan, 2003.

H. Jambukia, S. Shah, D. Vipul, and P. Harshadkumar, "Classification of ecg signals using machine learning techniques: A survey," in International Conference on Advances in Computer Engineering and Applications (ICACEA), IMS Engineering College, Ghaziabad, India, 2015.

Downloads

Published

2024-07-15

How to Cite

Desanti Nurma Risalah, Yoyon K. Suprapto, & Diah Puspito Wulandari. (2024). Klasifikasi Obstructive Sleep Apnea (OSA) Berdasarkan Fitur Statistik Interval RR pada Sinyal ECG. Journal of Computer Engineering, Network, and Intelligent Multimedia, 2(2), 67–77. https://doi.org/10.59378/jcenim.v2i2.50

Issue

Section

Articles